Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 199: 105772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458665

RESUMO

Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.


Assuntos
Hemócitos , Neonicotinoides , Nitrocompostos , Praguicidas , Toluidinas , Abelhas , Animais , Imunidade Inata , Fagocitose , Praguicidas/toxicidade
2.
Int J Phytoremediation ; 26(1): 143-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37405370

RESUMO

Phytoremediation is a biological soil remediation technique using plants and their associated microorganisms to clean-up contaminated soils and improve soils' quality. We tested whether a co-culture between Miscanthus x giganteus (MxG) and Trifolium repens L. would enhance the soil biological quality. The objective was to determine the influence of MxG in mono- and in co-culture with white clover on the soil microbial activity, biomass and density. MxG was tested in mono- and in co-culture with white clover in a mesocosm over 148 days. The microbial respiration (CO2 production), the microbial biomass and the microbial density of the technosol were measured. Results showed that MxG induced an increase in microbial activity in the technosol compared to the non-planted condition with the co-culture having a greater impact. Regarding the bacterial density, MxG in mono- and in co-culture significantly increased the 16S rDNA gene copy number. The co-culture increased the microbial biomass, the fungal density and stimulated the degrading bacterial population, contrary to the monoculture and the non-planted condition. We can conclude the co-culture between MxG and white clover was more interesting than MxG monoculture in regards to the technosol biological quality and its potential for PAH remediation improvement.


Our precedent results have shown the benefits of using Miscanthus x giganteus in association with Trifolium repens L. to improve polycyclic aromatic hydrocarbons dissipation and decrease soil ecotoxicity compared to monocultures. In this study we focused on the plant species' influence on the soil's biological quality to improve MxG biomass productivity in the long term and phytoremediation. Many bioindicators were used such as microbial activity, microbial biomass as well as bacteria, fungi and PAH-degrading bacteria density.We showed it was more beneficial to use co-culture instead of MxG monoculture to improve biological technosol quality and in particular microbial activity and biomass as well as fungi and PAH-degrading bacteria density.


Assuntos
Poluentes do Solo , Trifolium , Biodegradação Ambiental , Biomassa , Técnicas de Cocultura , Poluentes do Solo/análise , Poaceae , Solo , Microbiologia do Solo
3.
Environ Toxicol Pharmacol ; 104: 104323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37995888

RESUMO

Pollinator health has been of critical concern over the last few decades. The prevalence of the honeybee Colony Collapse Disorder (CCD), changing climate, and the rise of vector-borne honeybee diseases by Varroa destructor, have played a major role in the rapid decline of global honeybee populations. Honeybees are environmentally and economically significant actors in biodiversity. The impact of agricultural practices, such as pesticide use, has exacerbated the negative effects on honeybees. We demonstrate the synergistic effect of cocktails of the neonicotinoids imidacloprid and acetamiprid on honeybee haemocytes. Two genes responsible for critical immune responses, spaetzle and myD88, are consistently dysregulated following exposure to either neonicotinoid alone or as a mixture with or without an immune challenge. The 2018 ban of neonicotinoids in Europe, followed by the 2020 reauthorisation of imidacloprid in France and the current consideration to reinstate acetamiprid underscores the need to evaluate their cumulative impact on honeybee health.


Assuntos
Inseticidas , Fator 88 de Diferenciação Mieloide , Abelhas , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade
5.
Front Immunol ; 14: 1247582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753094

RESUMO

Background: The immune system of honeybees includes multiple pathways that may be affected by pesticide exposure decreasing the immune competencies of bees and increasing their susceptibility to diseases like the fungal Nosema spp. infection, which is detected in collapsed colonies. Methods: To better understand the effect of the co-presence of multiple pesticides that interact with bees like imidacloprid and amitraz, we evaluated the expression of immune-related genes in honeybee hemocytes. Results: Imidacloprid, amitraz, and the immune activator, zymosan A, mainly affect the gene expression in the Toll pathway. Discussion: Imidacloprid, amitraz, and zymosan A have a synergistic or an antagonistic relationship on gene expression depending on the level of immune signaling. The presence of multiple risk factors like pesticides and pathogens requires the assessment of their complex interaction, which has differential effects on the innate immunity of honeybees as seen in this study.

6.
Insects ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36835742

RESUMO

Invertebrates have a diverse immune system that responds differently to stressors such as pesticides and pathogens, which leads to different degrees of susceptibility. Honeybees are facing a phenomenon called colony collapse disorder which is attributed to several factors including pesticides and pathogens. We applied an in vitro approach to assess the response of immune-activated hemocytes from Apis mellifera, Drosophila melanogaster and Mamestra brassicae after exposure to imidacloprid and amitraz. Hemocytes were exposed to the pesticides in single and co-exposures using zymosan A for immune activation. We measured the effect of these exposures on cell viability, nitric oxide (NO) production from 15 to 120 min and on extracellular hydrogen peroxide (H2O2) production after 3 h to assess potential alterations in the oxidative response. Our results indicate that NO and H2O2 production is more altered in honeybee hemocytes compared to D. melanogaster and M. brassicae cell lines. There is also a differential production at different time points after pesticide exposure between these insect species as contrasting effects were evident with the oxidative responses in hemocytes. The results imply that imidacloprid and amitraz act differently on the immune response among insect orders and may render honeybee colonies more susceptible to infection and pests.

7.
Environ Sci Pollut Res Int ; 26(35): 36055-36062, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745780

RESUMO

Several human activities such as mining, smelting, or transportations lead to trace metal pollution in soil. The presence of these pollutants can represent environmental and organism health risks. Phytoextraction can be used to remediate trace metal-contaminated soils. It uses the plants' ability to remove trace metals from soil and to accumulate them in their shoots, which can then be harvested. We studied the spontaneous vegetation growing on a brownfield located in France. The use of native plants is interesting since spontaneous vegetation is already well adapted to the site's environmental conditions leading to a better survival and growth than non-native plants. Ten native plant species were sampled, and the Cr, Cu, Cd, Ni, Pb, and Zn concentrations present in their shoots were measured. In order to determine the plant's capacity to extract trace metals from the soil, the bioconcentration factor (BCF) was calculated for each plant and trace metal. Plants with a BCF greater than 1 are able to accumulate trace metals in their shoots and could be a good candidate to be used in phytoextraction. Results underscored one new accumulator plant for Zn, Tussilago farfara L., with a BCF value of 3.069. No hyperaccumulator was found among the other sampled plants. Our preliminary study showed that T. farfara is able to accumulate zinc in its shoots. Moreover, this native plant is a pioneer species able to quickly colonize various habitats by vegetative multiplication. That is why T. farfara  L. could be interesting for zinc phytoextraction and could be worth further studies.


Assuntos
Monitoramento Ambiental , Metais/metabolismo , Poluentes do Solo/metabolismo , Tussilago/metabolismo , Ácidos , Biodegradação Ambiental , França , Humanos , Mineração , Plantas , Solo , Poluentes do Solo/análise , Oligoelementos , Zinco/análise
8.
Pestic Biochem Physiol ; 160: 95-101, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519262

RESUMO

Neonicotinoid insecticides are increasingly used in modern pest control and in conventional agriculture. Their residues are frequently found in our environment and in our food leading to chronic exposure of pollinating insects and humans. Indeed, evidence has become stronger that chronic exposure to neonicotinoids might have a direct impact on the immune response of invertebrates and vertebrates. Therefore, we compared the cellular immune response of human macrophages (THP-1) and Drosophila melanogaster hemocytes (Schneider 2 cells) after exposure to four different concentrations of the neonicotinoid imidacloprid. Cells were immune activated with LPS (lipopolysaccharide) of Escherichia coli to compare the phagocytic activity of immune activated and non-activated cells during pesticide exposure. Drosophila cells were more strongly affected by the insecticide than human macrophages. Even though imidacloprid showed an adverse effect on phagocytosis on both cells while immune activated, it decreased phagocytosis in Drosophila cells at shorter exposure time and without immune activation.


Assuntos
Drosophila melanogaster/metabolismo , Hemócitos/efeitos dos fármacos , Inseticidas/farmacologia , Macrófagos/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Fagocitose/efeitos dos fármacos , Animais , Linhagem Celular , Hemócitos/imunologia , Humanos , Macrófagos/imunologia
9.
J Insect Physiol ; 108: 17-24, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758240

RESUMO

Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H2O2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H2O2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H2O2 and NO production.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/imunologia , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Abelhas/microbiologia , Sobrevivência Celular , Escherichia coli/imunologia , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Peróxido de Hidrogênio/metabolismo , Larva/efeitos dos fármacos , Larva/imunologia , Lipopolissacarídeos/imunologia , Óxido Nítrico/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...